Title
Factorization Machines
Abstract
In this paper, we introduce Factorization Machines (FM) which are a new model class that combines the advantages of Support Vector Machines (SVM) with factorization models. Like SVMs, FMs are a general predictor working with any real valued feature vector. In contrast to SVMs, FMs model all interactions between variables using factorized parameters. Thus they are able to estimate interactions even in problems with huge sparsity (like recommender systems) where SVMs fail. We show that the model equation of FMs can be calculated in linear time and thus FMs can be optimized directly. So unlike nonlinear SVMs, a transformation in the dual form is not necessary and the model parameters can be estimated directly without the need of any support vector in the solution. We show the relationship to SVMs and the advantages of FMs for parameter estimation in sparse settings. On the other hand there are many different factorization models like matrix factorization, parallel factor analysis or specialized models like SVD++, PITF or FPMC. The drawback of these models is that they are not applicable for general prediction tasks but work only with special input data. Furthermore their model equations and optimization algorithms are derived individually for each task. We show that FMs can mimic these models just by specifying the input data (i.e. the feature vectors). This makes FMs easily applicable even for users without expert knowledge in factorization models.
Year
DOI
Venue
2010
10.1109/ICDM.2010.127
ICDM
Keywords
DocType
Citations 
Factorization Machines,new model class,model equation,matrix factorization,model parameter,FMs model,factorization model,specialized model,nonlinear SVMs,feature vector,different factorization model
Conference
157
PageRank 
References 
Authors
4.88
1
1
Search Limit
100157
Name
Order
Citations
PageRank
Steffen Rendle1196370.68