Title
Trace-driven simulation of memory system scheduling in multithread application
Abstract
Along with commercial chip-multiprocessors (CMPs) integrating more and more cores, memory systems are playing an increasingly important role in multithread applications. Currently, trace-driven simulation is widely adopted in memory system scheduling research, since it is faster than execution-driven simulation and does not require data computation. On the contrary, due to the same reason, its trace replay for concurrent thread execution lacks data information and contains only addresses, so misplacement occurs in simulations when the trace of one thread runs ahead or behind others. This kind of distortion can cause remarkable errors during research. As shown in our experiment, trace misplacement causes an error rate of up to 10.22% in the metrics, including weighted IPC speedup, harmonic mean of IPC, and CPI throughput. This paper presents a methodology to avoid trace misplacement in trace-driven simulation and to ensure the accuracy of memory scheduling simulation in multithread applications, thus revealing a reliable means to study inter-thread actions in memory systems.
Year
DOI
Venue
2012
10.1145/2247684.2247691
MSPC
Keywords
Field
DocType
trace replay,memory scheduling simulation,trace-driven simulation,execution-driven simulation,data computation,multithread application,concurrent thread execution,memory system scheduling research,memory system,trace misplacement,scheduling algorithm,harmonic mean,error rate
Scheduling (computing),Computer science,Harmonic mean,Parallel computing,Word error rate,Thread (computing),Throughput,Distortion,Speedup,Computation
Conference
Citations 
PageRank 
References 
0
0.34
15
Authors
5
Name
Order
Citations
PageRank
Pengfei Zhu124931.05
Ming-yu Chen290279.29
Yungang Bao336131.11
Licheng Chen41039.74
Yongbing Huang5766.24