Title
Statistical analysis of co-channel interference in wireless communications systems
Abstract
Co‐channel interference is recognized as one of the major factors that limits the capacity and link quality of a wireless communications system. An appropriate understanding of the statistical behavior of the co‐channel interference is therefore required when analyzing and designing techniques that mitigate its undesired effects. The total co‐channel interference in a wireless communications system is usually modeled as the sum of lognormally distributed signals, and is generally assumed to be itself lognormally distributed. Based on this assumption, several methods for estimating the moments of the resulting lognormal distribution have been proposed. The accuracy of these methods has been studied in previous works, under the assumption of having all summand signals (individual interference signals) identically distributed. Such an assumption rarely holds in practical cases of emerging wireless communications systems, where co‐channel interference may stem from far‐away macrocells and nearby transmitters, causing the interference signals to have different moments. In this paper we present an analysis of the accuracy of two popular methods for computing the moments of a sum of lognormal random variables, namely Wilkinson's method and Schwartz and Yeh's method, for the general case when the summands have different mean values and standard deviations in decibel units. We show that Schwartz and Yeh's method provides better accuracy than Wilkinson's method and is virtually invariant with the difference of the mean values and standard deviations of the summands. Copyright © 2001 John Wiley & Sons, Ltd.
Year
DOI
Venue
2001
10.1002/1530-8677(200101/03)1:1<111::AID-WCM5>3.0.CO;2-5
Wireless Communications and Mobile Computing
Keywords
Field
DocType
statistical analysis,co channel interference
Wireless communication systems,Random variable,Computer science,Co-channel interference,Algorithm,Independent and identically distributed random variables,Invariant (mathematics),Interference (wave propagation),Statistics,Log-normal distribution,Standard deviation,Distributed computing
Journal
Volume
Issue
ISSN
1
1
1530-8677
Citations 
PageRank 
References 
16
1.87
7
Authors
2
Name
Order
Citations
PageRank
Paulo Cardieri17912.31
Theodore S. Rappaport24510344.77