Title
GPU accelerated Monte Carlo simulation of the 2D and 3D Ising model
Abstract
The compute unified device architecture (CUDA) is a programming approach for performing scientific calculations on a graphics processing unit (GPU) as a data-parallel computing device. The programming interface allows to implement algorithms using extensions to standard C language. With continuously increased number of cores in combination with a high memory bandwidth, a recent GPU offers incredible resources for general purpose computing. First, we apply this new technology to Monte Carlo simulations of the two dimensional ferromagnetic square lattice Ising model. By implementing a variant of the checkerboard algorithm, results are obtained up to 60 times faster on the GPU than on a current CPU core. An implementation of the three dimensional ferromagnetic cubic lattice Ising model on a GPU is able to generate results up to 35 times faster than on a current CPU core. As proof of concept we calculate the critical temperature of the 2D and 3D Ising model using finite size scaling techniques. Theoretical results for the 2D Ising model and previous simulation results for the 3D Ising model can be reproduced.
Year
DOI
Venue
2009
10.1016/j.jcp.2009.03.018
J. Comput. Physics
Keywords
Field
DocType
data-parallel computing device,dimensional ferromagnetic cubic lattice,programming approach,monte carlo simulation,65z05,dimensional ferromagnetic square lattice,recent gpu,unified device architecture,current cpu core,65c05,ising model,programming interface,finite size scaling,gpu computing,82c20,general purpose computing,phase transition,monte carlo simulation gpu computing ising model phase transition finite size scaling,memory bandwidth,proof of concept,three dimensional
Statistical physics,Monte Carlo method,Mathematical analysis,CUDA,Computer science,Computational science,Ising model,General-purpose computing on graphics processing units,Graphics processing unit,Multi-core processor,Scaling,Square-lattice Ising model
Journal
Volume
Issue
ISSN
228
12
Journal of Computational Physics
Citations 
PageRank 
References 
103
9.19
7
Authors
4
Search Limit
100103
Name
Order
Citations
PageRank
Tobias Preis115014.45
Peter Virnau218019.44
Wolfgang Paul31039.19
Johannes J. Schneider41039.53