Title
2D/3D Registration Based on Volume Gradients
Abstract
We present a set of new methods for efficient and precise registration of any X-Ray modality (fluoroscopy, portal imaging or regular X-Ray imaging) to a CT data set. These methods require neither feature extraction nor 2D or 3D segmentation. Our main contribution is to directly perform the computations on the gradient vector volume of the CT data, which has several advantages. It can increase the precision of the registration as it assesses mainly the alignment of intensity edges in both CT and X-Ray images. By using only significant areas of the gradient vector volume, the amount of information needed in each registration step can be reduced up to a factor of 10. This both speeds up the registration process and allows for using the CT data with full precision, e.g. 512(3) voxels. We introduce a Volume Gradient Rendering (VGR) as well as a Volume Gradient Correlation (VGC) method, where the latter one can be used directly for computing the image similarity without DRR generation.
Year
DOI
Venue
2005
10.1117/12.595466
PROCEEDINGS OF THE SOCIETY OF PHOTO-OPTICAL INSTRUMENTATION ENGINEERS (SPIE)
Keywords
Field
DocType
feature extraction
Voxel,Computer vision,Segmentation,Fluoroscopy,Feature extraction,Artificial intelligence,Rendering (computer graphics),Image registration,Mathematics,Computation
Conference
Volume
ISSN
Citations 
5747
0277-786X
6
PageRank 
References 
Authors
0.59
7
3
Name
Order
Citations
PageRank
Wolfgang Wein146138.75
Barbara Roper2464.92
Nassir Navab36594578.60