Title
LoopWeaver: loop modeling by the weighted scaling of verified proteins.
Abstract
Modeling loops is a necessary step in protein structure determination, even with experimental nuclear magnetic resonance (NMR) data, it is widely known to be difficult. Database techniques have the advantage of producing a higher proportion of predictions with subangstrom accuracy when compared with ab initio techniques, but the disadvantage of also producing a higher proportion of clashing or highly inaccurate predictions. We introduce LoopWeaver, a database method that uses multidimensional scaling to achieve better, clash-free placement of loops obtained from a database of protein structures. This allows us to maintain the above-mentioned advantage while avoiding the disadvantage. Test results show that we achieve significantly better results than all other methods, including Modeler, Loopy, SuperLooper, and Rapper, before refinement. With refinement, our results (LoopWeaver and Loopy consensus) are better than ROSETTA, with 0.42 Å RMSD on average for 206 length 6 loops, 0.64 Å local RMSD for 168 length 7 loops, 0.81Å RMSD for 117 length 8 loops, and 0.98 Å RMSD for length 9 loops, while ROSETTA has 0.55, 0.79, 1.16, 1.42, respectively, at the same average time limit (3 hours). When we allow ROSETTA to run for over a week, it approaches, but does not surpass, our accuracy.
Year
DOI
Venue
2013
10.1089/cmb.2012.0078
RECOMB
Keywords
DocType
Volume
computational biology,proteins,algorithms
Journal
20
Issue
ISSN
Citations 
3
1557-8666
3
PageRank 
References 
Authors
0.45
5
3
Name
Order
Citations
PageRank
Daniel Holtby130.45
Shuai Cheng Li218430.25
Ming Li35595829.00