Title
Protein structure by semidefinite facial reduction
Abstract
All practical contemporary protein NMR structure determination methods use molecular dynamics coupled with a simulated annealing schedule. The objective of these methods is to minimize the error of deviating from the NOE distance constraints. However, this objective function is highly nonconvex and, consequently, difficult to optimize. Euclidean distance geometry methods based on semidefinite programming (SDP) provide a natural formulation for this problem. However, complexity of SDP solvers and ambiguous distance constraints are major challenges to this approach. The contribution of this paper is to provide a new SDP formulation of this problem that overcomes these two issues for the first time. We model the protein as a set of intersecting two- and three-dimensional cliques, then we adapt and extend a technique called semidefinite facial reduction to reduce the SDP problem size to approximately one quarter of the size of the original problem. The reduced SDP problem can not only be solved approximately 100 times faster, but is also resistant to numerical problems from having erroneous and inexact distance bounds.
Year
DOI
Venue
2012
10.1007/978-3-642-29627-7_1
RECOMB
Keywords
Field
DocType
sdp problem size,inexact distance bound,noe distance constraint,reduced sdp problem,protein structure,semidefinite facial reduction,ambiguous distance constraint,original problem,new sdp formulation,euclidean distance geometry method,numerical problem,sdp solvers,nuclear magnetic resonance
Simulated annealing,Mathematical optimization,Euclidean distance,Algorithm,Semidefinite programming,Mathematics
Conference
Citations 
PageRank 
References 
1
0.36
12
Authors
6
Name
Order
Citations
PageRank
Babak Alipanahi1987.45
Nathan Krislock21076.22
Ali Ghodsi324517.05
Henry Wolkowicz41444260.72
Logan Donaldson5473.38
Ming Li65595829.00