Title
A general lower bound for mixing of single-site dynamics on graphs
Abstract
We prove that any Markov chain that performs local, reversible updates on randomly chosen vertices of a bounded-degree graph necessarily has mixing time at least \Omega (n\log n), where n is the number of vertices. Our bound applies to the so-called "Glauber dynamics" that has been used extensively in algorithms for the Ising model, independent sets, graph colorings and other structures in computer science and statistical physics, and demonstrates that many of these algorithms are optimal up to constant factors within their class. Previously no super-linear lower bound for this class of algorithms was known. Though widely conjectured, such a bound had been proved previously only in very restricted circumstances, such as for the empty graph and the path. We also show that the assumption of bounded degree is necessary by giving a family of dynamics on graphs of unbounded degree with mixing time O(n).
Year
DOI
Venue
2005
10.1214/105051607000000104
Annals of Applied Probability
Keywords
Field
DocType
lower bound,mixing time,independent set,statistical physics,ising model,markov chain,graph coloring
Discrete mathematics,Combinatorics,Bound graph,Upper and lower bounds,Cycle graph,Directed graph,Null graph,Independent set,Time complexity,Mathematics,Path graph
Conference
Volume
Issue
ISSN
17
3
Annals of Applied Probability 2007, Vol. 17, No. 3, 931-952
ISBN
Citations 
PageRank 
0-7695-2468-0
11
0.67
References 
Authors
7
2
Name
Order
Citations
PageRank
Thomas P. Hayes165954.21
Alistair Sinclair21506308.40