Title
Design of a wireless test control network with radio-on-chip technology for nanometer system-on-a-chip
Abstract
The continued push to smaller geometries, higher frequencies, and larger chip sizes rapidly resulted in an incompatibility between interconnect needs and projected interconnect performance. As stated in the 2003 International Technology Roadmap for Semiconductors (ITRS'03) report, revolutionary interconnect methodologies such as radio frequency (RF)/wireless will deliver the foreseen progress in semiconductor technology. Recent advances in silicon integrated circuit technique are making possible tiny low-cost transceivers to be integrated on chip, namely "radio-on-chip" (ROC) technology. This paper proposes the idea of using wireless radios to transmit test data and control signals to resolve the acerbated core accessibility problem. Three types of wireless test micronetworks are first presented, i.e., miniature wireless local area network (LAN), multihop wireless test control network (MTCNet), and distributed multihop MTCNet. Then, the test control overhead and system resource partitioning in on-chip wireless micronetworks are analyzed. Several challenging system design problems such as RF node placement, core clustering, and control routing are studied, and the test control resources (i.e., the on-chip RF nodes for intrachip communication) are properly distributed and system optimization is performed in terms of test control cost. A simulation study shows the feasibility and applicability of intrachip MTCNet
Year
DOI
Venue
2006
10.1109/TCAD.2005.855919
IEEE Trans. on CAD of Integrated Circuits and Systems
Keywords
DocType
Volume
control routing,control signal,on-chip wireless micronetworks,miniature wireless,test data,test control overhead,wireless test control network,test control cost,test control resource,nanometer system-on-a-chip,radio-on-chip technology,multihop wireless test control,wireless radio
Journal
25
Issue
ISSN
Citations 
7
0278-0070
13
PageRank 
References 
Authors
1.48
19
3
Name
Order
Citations
PageRank
D. Zhao1322.34
S. Upadhyaya2817.01
Martin Margala3759.77