Title
Determination of the differentially expressed genes in microarray experiments using local FDR.
Abstract
Thousands of genes in a genomewide data set are tested against some null hypothesis, for detecting differentially expressed genes in microarray experiments. The expected proportion of false positive genes in a set of genes, called the False Discovery Rate (FDR), has been proposed to measure the statistical significance of this set. Various procedures exist for controlling the FDR. However the threshold (generally 5%) is arbitrary and a specific measure associated with each gene would be worthwhile.Using process intensity estimation methods, we define and give estimates of the local FDR, which may be considered as the probability for a gene to be a false positive. After a global assessment rule controlling the false positive error, the local FDR is a valuable guideline for deciding wether a gene is differentially expressed. The interest of the method is illustrated on three well known data sets. A R routine for computing local FDR estimates from p-values is available at http://www.inapg.fr/ens_rech/mathinfo/recherche/mathematique/outil.html.The local FDR associated with each gene measures the probability that it is a false positive. It gives the opportunity to compute the FDR of any given group of clones (of the same gene) or genes pertaining to the same regulation network or the same chromosomic region.
Year
DOI
Venue
2004
10.1186/1471-2105-5-125
BMC Bioinformatics
Keywords
Field
DocType
microarrays,statistical significance,false positive,false discovery rate,bioinformatics,algorithms,gene expression profiling,gene expression regulation
Precursor Cell Lymphoblastic Leukemia Lymphoma,False discovery rate,Microarray,Gene,Biology,Regulation of gene expression,Bioinformatics,Genetics,Familywise error rate,Gene expression profiling,DNA microarray
Journal
Volume
Issue
ISSN
5
1
1471-2105
Citations 
PageRank 
References 
25
3.25
0
Authors
4
Name
Order
Citations
PageRank
Julie Aubert118511.01
Avner Bar-Hen214812.81
Jean-Jacques Daudin334228.26
Stéphane Robin414615.73