Title
A predictive network architecture for a robust and smooth robot docking behavior.
Abstract
Abstract Robots and living beings exhibit latencies in their sensorimotor processing due to mechanical and electronic or neural processing delays. A reaction typically occurs to input stimuli of the past. This is critical not only when the environment changes (e.g. moving objects) but also when the agent itself moves. An agent that does not predict while moving may need to remain static between sensory input acquisition and output response to guarantee that the response is appropriate to the percept. We propose a biologically-inspired learning model of predictive sensorimotor integration to compensate for this latency. In this model, an Elman network is developed for sensory prediction and sensory filtering; a Continuous Actor-Critic Learning Automaton (CACLA) is trained for continuous action generation. For a robot docking experiment, this architecture improves the smoothness of the robot’s sensory input and therefore results in a faster and more accurate continuous approach behavior.
Year
DOI
Venue
2012
10.2478/s13230-013-0106-8
Paladyn
Field
DocType
Volume
Computer science,Simulation,Latency (engineering),Automaton,Network architecture,Artificial intelligence,Stimulus (physiology),Robot,Smoothness,Sensory system,Machine learning,Percept
Journal
3
Issue
ISSN
Citations 
4
2081-4836
3
PageRank 
References 
Authors
0.38
17
3
Name
Order
Citations
PageRank
Junpei Zhong1266.99
Cornelius Weber231841.92
Stefan Wermter31100151.62