Title
Probabilistic Models for Query Approximation with Large Sparse Binary Datasets
Abstract
Large sparse sets of binary transaction data with millions of records and thousands of attributes occur in various domains: customers purchasing products, users visiting web pages, and documents containing words are just three typical examples. Real-time query selectivity estimation (the problem of estimating the number of rows in the data satisfying a given predicate) is an important practical problem for such databases. We investigate the application of probabilistic models to this problem. In particular, we study a Markov random field (MRF) approach based on frequent sets and maximum entropy, and compare it to the independence model and the Chow-Liu tree model. We find that the MRF model provides substantially more accurate probability estimates than the other methods but is more expensive from a computational and memory viewpoint. To alleviate the computational requirements we show how one can apply bucket elimination and clique tree approaches to take advantage of structure in the models and in the queries. We provide experimental results on two large real-world transaction datasets.
Year
Venue
DocType
2013
CoRR
Journal
Volume
Citations 
PageRank 
abs/1301.3884
0
0.34
References 
Authors
0
3
Name
Order
Citations
PageRank
Dmitry Pavlov159949.76
Heikki Mannila265951495.69
Padhraic Smyth371481451.38