Title
Extracting secret keys from integrated circuits
Abstract
Modern cryptographic protocols are based on the premise that only authorized participants can obtain secret keys and access to information systems. However, various kinds of tampering methods have been devised to extract secret keys from conditional access systems such as smartcards and ATMs. Arbiter-based physical unclonable functions (PUFs) exploit the statistical delay variation of wires and transistors across integrated circuits (ICs) in manufacturing processes to build unclonable secret keys. We fabricated arbiter-based PUFs in custom silicon and investigated the identification capability, reliability, and security of this scheme. Experimental results and theoretical studies showthat a sufficient amount of inter-chip variation exists to enable each IC to be identified securely and reliably over a practical range of environmental variations such as temperature and power supply voltage. We show that arbiter-based PUFs are realizable and well suited to build, for example, key-cards that need to be resistant to physical attacks.
Year
DOI
Venue
2005
10.1109/TVLSI.2005.859470
IEEE Trans. VLSI Syst.
Keywords
DocType
Volume
integrated circuits,tamper resistance,integrated circuit,process variation,smartcard,random function,identification,data mining,cryptographic protocol,indexing terms,chip,security,silicon,cryptographic protocols,public key cryptography,information systems
Journal
13
Issue
ISSN
Citations 
10
1063-8210
313
PageRank 
References 
Authors
29.90
8
6
Search Limit
100313
Name
Order
Citations
PageRank
Daihyun Lim143454.59
Jae W. Lee260752.37
Blaise Gassend31738164.28
G. Edward Suh42721208.03
Marten Van Dijk52875242.07
Srinivas Devadas686061146.30