Title
Polylogarithmic Approximation for Generalized Minimum Manhattan Networks
Abstract
Given a set of $n$ terminals, which are points in $d$-dimensional Euclidean space, the minimum Manhattan network problem (MMN) asks for a minimum-length rectilinear network that connects each pair of terminals by a Manhattan path, that is, a path consisting of axis-parallel segments whose total length equals the pair's Manhattan distance. Even for $d=2$, the problem is NP-hard, but constant-factor approximations are known. For $d \ge 3$, the problem is APX-hard; it is known to admit, for any $\eps > 0$, an $O(n^\eps)$-approximation. In the generalized minimum Manhattan network problem (GMMN), we are given a set $R$ of $n$ terminal pairs, and the goal is to find a minimum-length rectilinear network such that each pair in $R$ is connected by a Manhattan path. GMMN is a generalization of both MMN and the well-known rectilinear Steiner arborescence problem (RSA). So far, only special cases of GMMN have been considered. We present an $O(\log^{d+1} n)$-approximation algorithm for GMMN (and, hence, MMN) in $d \ge 2$ dimensions and an $O(\log n)$-approximation algorithm for 2D. We show that an existing $O(\log n)$-approximation algorithm for RSA in 2D generalizes easily to $d>2$ dimensions.
Year
Venue
Field
2012
European Workshop on Computational Geometry
Binary logarithm,Discrete mathematics,Combinatorics,Euclidean distance,Euclidean space,Arborescence,Mathematics
DocType
Volume
Citations 
Journal
abs/1203.6481
0
PageRank 
References 
Authors
0.34
9
6
Name
Order
Citations
PageRank
Aparna Das122.10
Krzysztof Fleszar236825.38
Stephen G. Kobourov31440122.20
Joachim Spoerhase411214.12
Sankar Veeramoni5223.91
Alexander Wolff622222.66