Title
Branch-and-cut approaches for chance-constrained formulations of reliable network design problems.
Abstract
Abstract We study solution approaches for the design of reliably connected networks. Specifically, given a network with arcs that may fail at random, the goal is to select a minimum cost subset of arcs such the probability that a connectivity requirement is satisfied is at least \(1 - \epsilon \), where \(\epsilon \) is a risk tolerance. We consider two types of connectivity requirements. We first study the problem of requiring an \(s\)-\(t\) path to exist with high probability in a directed graph. Then we consider undirected graphs, where we require the graph to be fully connected with high probability. We model each problem as a stochastic integer program with a joint chance constraint, and present two formulations that can be solved by a branch-and-cut algorithm. The first formulation uses binary variables to represent whether or not the connectivity requirement is satisfied in each scenario of arc failures and is based on inequalities derived from graph cuts in individual scenarios. We derive additional valid inequalities for this formulation and study their facet-inducing properties. The second formulation is based on probabilistic graph cuts, an extension of graph cuts to graphs with random arc failures. Inequalities corresponding to probabilistic graph cuts are sufficient to define the set of feasible solutions and violated inequalities in this class can be found efficiently at integer solutions, allowing this formulation to be solved by a branch-and-cut algorithm. Computational results demonstrate that the approaches can effectively solve instances on large graphs with many failure scenarios. In addition, we demonstrate that, by varying the risk tolerance, our model yields a rich set of solutions on the efficient frontier of cost and reliability.
Year
DOI
Venue
2013
10.1007/s12532-013-0058-3
Math. Program. Comput.
Keywords
Field
DocType
Reliable network design, Chance constraints, Integer programming
Cut,Integer,Discrete mathematics,Mathematical optimization,Network planning and design,Branch and cut,Directed graph,Integer programming,Connectivity,Mathematics,Binary number
Journal
Volume
Issue
ISSN
5
4
1867-2957
Citations 
PageRank 
References 
10
0.55
26
Authors
2
Name
Order
Citations
PageRank
Yongjia Song1345.05
James Luedtke243925.95