Title
Physical modeling with orthotropic material based on harmonic fields.
Abstract
Although it is well known that human bone tissues have obvious orthotropic material properties, most works in the physical modeling field adopted oversimplified isotropic or approximated transversely isotropic elasticity due to the simplicity. This paper presents a convenient methodology based on harmonic fields, to construct volumetric finite element mesh integrated with complete orthotropic material. The basic idea is taking advantage of the fact that the longitudinal axis direction indicated by the shape configuration of most bone tissues is compatible with the trajectory of the maximum material stiffness. First, surface harmonic fields of the longitudinal axis direction for individual bone models were generated, whose scalar distribution pattern tends to conform very well to the object shape. The scalar iso-contours were extracted and sampled adaptively to construct volumetric meshes of high quality. Following, the surface harmonic fields were expanded over the whole volumetric domain to create longitudinal and radial volumetric harmonic fields, from which the gradient vector fields were calculated and employed as the orthotropic principal axes vector fields. Contrastive finite element analyses demonstrated that elastic orthotropy has significant effect on simulating stresses and strains, including the value as well as distribution pattern, which underlines the relevance of our orthotropic modeling scheme.
Year
DOI
Venue
2012
10.1016/j.cmpb.2011.04.005
Computer Methods and Programs in Biomedicine
Keywords
Field
DocType
volumetric mesh,physical modeling,obvious orthotropic material property,volumetric finite element mesh,orthotropic principal axes vector,surface harmonic field,harmonic field,complete orthotropic material,longitudinal axis direction,orthotropic modeling scheme,radial volumetric harmonic field,orthotropic material,finite element modeling,anisotropy
Isotropy,Mathematical analysis,Computer science,Scalar (physics),Volume mesh,Artificial intelligence,Geometry,Computer vision,Orthotropic material,Vector field,Principal axis theorem,Finite element method,Transverse isotropy
Journal
Volume
Issue
ISSN
108
2
1872-7565
Citations 
PageRank 
References 
2
0.40
5
Authors
5
Name
Order
Citations
PageRank
Shenghui Liao17014.44
Beiji Zou223141.61
Jian-Ping Geng350.77
Jin-Xiao Wang420.40
Xi Ding581.24