Title
On the limits of the human motor control precision: the search for a device's human resolution
Abstract
Input devices are often evaluated in terms of their throughput, as measured by Fitts' Law, and by their resolution. However, little effort has been made to understand the limit of resolution that is controllable or "usable" by the human using the device. What is the point of a 5000 dpi computer mouse if the human motor control system is far from being able to achieve this level of precision? This paper introduces the concept of a Device's Human Resolution (DHR): the smallest target size that users can acquire with an ordinary amount of effort using one particular device. We report on our attempt to find the DHR through a target acquisition experiment involving very small target sizes. Three devices were tested: a gaming mouse (5700 dpi), a PHANTOM (450 dpi), and a free-space device (85 dpi). The results indicate a decrease in target acquisition performance that is not predicted by Fitts' Law when target sizes become smaller than certain levels. In addition, the experiment shows that the actual achievable resolution varies greatly depending on the input device used, hence the need to include the "device" in the definition of DHR.
Year
DOI
Venue
2011
10.1007/978-3-642-23771-3_10
INTERACT (2)
Keywords
Field
DocType
target size,smallest target size,actual achievable resolution,target acquisition performance,human motor control precision,particular device,human resolution,dpi computer mouse,target acquisition experiment,small target size,free-space device,input device,accuracy,resolution
USable,Target acquisition,Computer mouse,Simulation,Computer science,Imaging phantom,Motor control,Throughput,Computer hardware,Input device
Conference
Volume
ISSN
Citations 
6947
0302-9743
14
PageRank 
References 
Authors
0.68
15
3
Name
Order
Citations
PageRank
François Bérard139039.21
Guangyu Wang2151.04
Jeremy R. Cooperstock3449102.09