Title
Automated empirical tuning of scientific codes for performance and power consumption
Abstract
Automatic empirical tuning of compiler optimizations has been widely used to achieve portable high performance for scientific applications. However, as power dissipation becomes increasingly important in modern architecture design, few have attempted to empirically tune optimization configurations to reduce the power consumption of applications. We provide an automated empirical tuning framework that can be configured to optimize for both performance and energy efficiency. In particular, we extensively parameterize the configuration of a large number of compiler optimizations, including loop parallelization, blocking, unroll-and-jam, array copying, scalar replacement, strength reduction, and loop unrolling. We then use hardware counters combined with elapsed time to estimate both the performance and the power consumption of differently optimized code to automatically discover desirable configurations for these optimizations. We use a power meter to verify our tuning results on two multi-core computers and show that our approach can effectively achieve a balanced performance and energy efficiency on modern CMP machines.
Year
DOI
Venue
2011
10.1145/1944862.1944880
HiPEAC
Keywords
Field
DocType
balanced performance,scientific code,power dissipation,compiler optimizations,automated empirical tuning,automatic empirical tuning,power consumption,tuning result,portable high performance,automated empirical tuning framework,power meter,energy efficiency,performance,compiler optimization,energy efficient
Dissipation,Computer science,Efficient energy use,Scalar (physics),Parallel computing,Copying,Real-time computing,Optimizing compiler,Loop unrolling,Strength reduction,Electricity meter
Conference
Citations 
PageRank 
References 
24
0.95
22
Authors
3
Name
Order
Citations
PageRank
Shah Faizur Rahman1240.95
Jichi Guo2443.31
Qing Yi319011.89