Title
Semi-automated haptic device for cable installation
Abstract
The development of a semi-automated haptic device for installing cables is a promising application for ship building industry, as well as in other industries which require power cable installations. The most critical tasks of this device involve quickly and reliably grasping and releasing cables. In this study, we design a device with an end-effector that uses a self-locking mechanism based on rope elements. Here, the pulling force is directly transferred to the cable using a frictional connection. The modules of this device are designed for one-person-operation, and optimize for the harsh environment of shipyards. A set of equations of motions were derived from a mathematical model of the connection between rope elements of the end effector and the cable, which show that the presented design provides the necessary no-slip condition between the end effector and the cable. A printed circuit board with an 8-bit microcontroller controls the induction motor which gives 0.6 horsepower, in combination with an AC motor driver. Thereby sensor signals are processed to ensure the desired functions by the operator's commands. This device has been shown to perform with enhanced efficiency in cable-installing tasks throughout the field test in a shipyard.
Year
DOI
Venue
2011
10.1109/ICRA.2011.5980492
ICRA
Keywords
Field
DocType
microcontrollers,induction motor drives,shipyard,word length 8 bit,no-slip condition,ac motor driver,rope elements,ropes,shipbuilding industry,frictional connection,equation of motion,mathematical model,microcontroller controls,end effectors,printed circuit board,semiautomated haptic device,printed circuits,ship building industry,self-locking mechanism,end effector design,design engineering,power cables,haptic interfaces,sensor signals,induction motor,power cable installation,force,winches,ac motors,haptic device,optical fiber,no slip condition
Control theory,Power cable,AC motor,Robot end effector,Control engineering,Cable harness,Winch,Engineering,Electrical engineering,Cable tester,Rope,Haptic technology
Conference
Volume
Issue
ISSN
2011
1
1050-4729
ISBN
Citations 
PageRank 
978-1-61284-386-5
0
0.34
References 
Authors
0
4
Name
Order
Citations
PageRank
Yoon Jung Jeong100.68
H. Kazerooni2766314.26
Eugen Solowjow3114.69
Jakob Katz400.34