Title
Self-Organization Of Muscle Cell Structure And Function
Abstract
The organization of muscle is the product of functional adaptation over several length scales spanning from the sarcomere to the muscle bundle. One possible strategy for solving this multiscale coupling problem is to physically constrain the muscle cells in microenvironments that potentiate the organization of their intracellular space. We hypothesized that boundary conditions in the extracellular space potentiate the organization of cytoskeletal scaffolds for directed sarcomeregenesis. We developed a quantitative model of how the cytoskeleton of neonatal rat ventricular myocytes organizes with respect to geometric cues in the extracellular matrix. Numerical results and in vitro assays to control myocyte shape indicated that distinct cytoskeletal architectures arise from two temporally-ordered, organizational processes: the interaction between actin fibers, premyofibrils and focal adhesions, as well as cooperative alignment and parallel bundling of nascent myofibrils. Our results suggest that a hierarchy of mechanisms regulate the self-organization of the contractile cytoskeleton and that a positive feedback loop is responsible for initiating the break in symmetry, potentiated by extracellular boundary conditions, is required to polarize the contractile cytoskeleton.
Year
DOI
Venue
2011
10.1371/journal.pcbi.1001088
PLOS COMPUTATIONAL BIOLOGY
Keywords
Field
DocType
myofibrils,actins,computer simulation,focal adhesions,classical mechanics,cytoskeleton,muscle cell,focal adhesion,sarcomeres,positive feedback,symmetry,self organization,boundary condition,extracellular matrix,immunohistochemistry,integrins,length scale
Muscle contraction,Myocyte,Sarcomere,Biology,Focal adhesion,Cytoskeleton,Cell biology,Actin,Myofibril,Extracellular matrix
Journal
Volume
Issue
ISSN
7
2
1553-7358
Citations 
PageRank 
References 
2
0.61
2
Authors
8