Title
The Finite Volume-Complete Flux Scheme for Advection-Diffusion-Reaction Equations
Abstract
We present a new finite volume scheme for the advection-diffusion-reaction equation. The scheme is second order accurate in the grid size, both for dominant diffusion and dominant advection, and has only a three-point coupling in each spatial direction. Our scheme is based on a new integral representation for the flux of the one-dimensional advection-diffusion-reaction equation, which is derived from the solution of a local boundary value problem for the entire equation, including the source term. The flux therefore consists of two parts, corresponding to the homogeneous and particular solution of the boundary value problem. Applying suitable quadrature rules to the integral representation gives the complete flux scheme. Extensions of the complete flux scheme to two-dimensional and time-dependent problems are derived, containing the cross flux term or the time derivative in the inhomogeneous flux, respectively. The resulting finite volume-complete flux scheme is validated for several test problems.
Year
DOI
Venue
2011
10.1007/s10915-010-9388-8
J. Sci. Comput.
Keywords
Field
DocType
boundary value problem,finite volume,hyperbolic partial differential equation,second order,reaction diffusion equation,finite volume method,quadrature rule,conservation law,partial differential equation,flux,numerical method,source term
Boundary value problem,Mathematical optimization,Mathematical analysis,Time derivative,Flux,Quadrature (mathematics),Method of undetermined coefficients,Flux limiter,Finite volume method,Reaction–diffusion system,Mathematics
Journal
Volume
Issue
ISSN
46
1
1573-7691
Citations 
PageRank 
References 
7
1.23
2
Authors
2
Name
Order
Citations
PageRank
J. H. Thije Boonkkamp1237.77
M. J. H. Anthonissen2103.12