Title
Hyperelliptic curve coprocessors on a FPGA
Abstract
Cryptographic algorithms are used in a large variety of different applications to ensure security services. It is, thus, very interesting to investigate various implementation platforms. Hyperelliptic curve schemes are cryptographic primitives to which a lot of attention was recently given due to the short operand size compared to other algorithms. They are specifically interesting for special-purpose hardware. This paper provides a comprehensive investigation of high-efficient HEC architectures. We propose a genus-2 hyperelliptic curve cryptographic coprocessor using affine coordinates. We implemented a special class of hyperelliptic curves, namely using the parameter h(x)=x and f=x5+f1x+f0 and the base field GF(289). In addition, we only consider the most frequent case in our implementation and assume that the other cases are handled, e.g. by the protocol. We provide three different implementations ranging from high speed to moderate area. Hence, we provide a solution for a variety of applications. Our high performance HECC coprocessor is 78.5% faster than the best previous implementation and our low area implementation utilizes only 22.7% of the area that the smallest published design uses. Taking into account both area and latency, our coprocessor is an order of magnitude more efficient than previous implementations. We hope that the work at hand provides a step towards introducing HEC systems in practical applications.
Year
DOI
Venue
2004
10.1007/978-3-540-31815-6_29
WISA
Keywords
Field
DocType
cryptographic primitive,low area implementation,high performance hecc coprocessor,different application,hyperelliptic curve coprocessors,moderate area,hec system,different implementation,previous implementation,hyperelliptic curve scheme,various implementation platform,hyperelliptic curve
Affine transformation,Hyperelliptic curve,Computer science,Cryptography,Operand,Parallel computing,Field-programmable gate array,Theoretical computer science,Cryptographic primitive,Coprocessor,Reconfigurable computing
Conference
Volume
ISSN
ISBN
3325
0302-9743
3-540-24015-2
Citations 
PageRank 
References 
10
0.71
14
Authors
5
Name
Order
Citations
PageRank
Howon Kim130554.86
Thomas J. Wollinger218219.83
Yongje Choi3162.20
Kyo-Il Chung47012.97
Christof Paar53794442.62