Title
Improved Time Complexities for Learning Boolean Networks.
Abstract
Existing algorithms for learning Boolean networks (BNs) have time complexities of at least O(N . n(0.7(k+1))), where n is the number of variables, N is the number of samples and k is the number of inputs in Boolean functions. Some recent studies propose more efficient methods with O(N . n(2)) time complexities. However, these methods can only be used to learn monotonic BNs, and their performances are not satisfactory when the sample size is small. In this paper, we mathematically prove that OR/AND BNs, where the variables are related with logical OR/AND operations, can be found with the time complexity of O(k.(N+log(n)).n(2)), if there are enough noiseless training samples randomly generated from a uniform distribution. We also demonstrate that our method can successfully learn most BNs, whose variables are not related with exclusive OR and Boolean equality operations, with the same order of time complexity for learning OR/AND BNs, indicating our method has good efficiency for learning general BNs other than monotonic BNs. When the datasets are noisy, our method can still successfully identify most BNs with the same efficiency. When compared with two existing methods with the same settings, our method achieves a better comprehensive performance than both of them, especially for small training sample sizes. More importantly, our method can be used to learn all BNs. However, of the two methods that are compared, one can only be used to learn monotonic BNs, and the other one has a much worse time complexity than our method. In conclusion, our results demonstrate that Boolean networks can be learned with improved time complexities.
Year
DOI
Venue
2013
10.3390/e15093762
ENTROPY
Keywords
Field
DocType
Boolean networks,gene regulatory networks,mutual information,entropy,time complexity
Boolean function,Monotonic function,Exclusive or,Computer science,Algorithm,Uniform distribution (continuous),Theoretical computer science,Logical disjunction,Mutual information,Statistics,Time complexity,Sample size determination
Journal
Volume
Issue
ISSN
15
9
1099-4300
Citations 
PageRank 
References 
0
0.34
27
Authors
2
Name
Order
Citations
PageRank
Yun Zheng15911.91
C K Kwoh255946.55