Title
Interrogation of differential geometry properties for design and manufacture
Abstract
This paper describes a new robust method to decompose a free-form surface into regions with specific range of curvature and provide important tools for surface analysis, tool-path generation, and tool-size selection for numerically controlled machining, tessellation of trimmed patches for surface interrogation and finite-element meshing, and fairing of free-form surfaces. The key element in these techniques is the computation ofall real roots within a finite box of systems of nonlinear equations involving polynomials and square roots of polynomials. The free-form surfaces are bivariate polynomial functions, but the analytical expressions of their principal curvatures involve polynomials and square roots of polynomials. Key components are the reduction of the problems into solutions of systems of polynomial equations of higher dimensionality through the introduction ofauxiliary variables and the use ofrounded interval arithmetic in the context of Bernstein subdivision to enhance the robustness of floating-point implementation. Examples are given that illustrate our techniques.
Year
DOI
Venue
1994
10.1007/BF01901288
The Visual Computer
Keywords
Field
DocType
CAD,CAGD,CAM,Curvature analysis,Nonlinear equations,Rounded interval arithmetic,Subdivision
Applied mathematics,Mathematical optimization,Nonlinear system,Polynomial,Algorithm,System of polynomial equations,Principal curvature,Finite element method,Differential geometry,Square root,Interval arithmetic,Mathematics
Journal
Volume
Issue
Citations 
10
4
40
PageRank 
References 
Authors
3.70
18
2
Name
Order
Citations
PageRank
Takashi Maekawa144935.38
Nicholas M. Patrikalakis281371.51