Title
WaveletQuant, an improved quantification software based on wavelet signal threshold de-noising for labeled quantitative proteomic analysis.
Abstract
Quantitative proteomics technologies have been developed to comprehensively identify and quantify proteins in two or more complex samples. Quantitative proteomics based on differential stable isotope labeling is one of the proteomics quantification technologies. Mass spectrometric data generated for peptide quantification are often noisy, and peak detection and definition require various smoothing filters to remove noise in order to achieve accurate peptide quantification. Many traditional smoothing filters, such as the moving average filter, Savitzky-Golay filter and Gaussian filter, have been used to reduce noise in MS peaks. However, limitations of these filtering approaches often result in inaccurate peptide quantification. Here we present the WaveletQuant program, based on wavelet theory, for better or alternative MS-based proteomic quantification.We developed a novel discrete wavelet transform (DWT) and a 'Spatial Adaptive Algorithm' to remove noise and to identify true peaks. We programmed and compiled WaveletQuant using Visual C++ 2005 Express Edition. We then incorporated the WaveletQuant program in the Trans-Proteomic Pipeline (TPP), a commonly used open source proteomics analysis pipeline.We showed that WaveletQuant was able to quantify more proteins and to quantify them more accurately than the ASAPRatio, a program that performs quantification in the TPP pipeline, first using known mixed ratios of yeast extracts and then using a data set from ovarian cancer cell lysates. The program and its documentation can be downloaded from our website at http://systemsbiozju.org/data/WaveletQuant.
Year
DOI
Venue
2010
10.1186/1471-2105-11-219
BMC Bioinformatics
Keywords
Field
DocType
moving average,bioinformatics,yeast extract,stable isotope,algorithms,discrete wavelet transform,microarrays
Gaussian filter,Biology,Proteomics,Quantitative proteomics,Filter (signal processing),Smoothing,Discrete wavelet transform,Bioinformatics,Moving average,Wavelet
Journal
Volume
Issue
ISSN
11
1
1471-2105
Citations 
PageRank 
References 
12
0.63
15
Authors
8
Name
Order
Citations
PageRank
Fan Mo1627.64
Qun Mo21067.43
Yuanyuan Chen3120.63
David R Goodlett4291.83
Leroy Hood516545.56
Gilbert S. Omenn61078.45
Song Li7518.49
Biaoyang Lin8953.97