Title
Measurement of cerebral blood volume in mouse brain regions using micro-computed tomography.
Abstract
Micro-computed tomography (micro-CT) is an X-ray imaging technique that can produce detailed 3D images of cerebral vasculature. This paper describes the development of a novel method for using micro-CT to measure cerebral blood volume (CBV) in the mouse brain. As an application of the methodology, we test the hypotheses that differences in CBV exist over anatomical brain regions and that high energy demanding primary sensory regions of the cortex have locally elevated CBV, which may reflect a vascular specialization. CBV was measured as the percentage of tissue space occupied by a radio-opaque silicon rubber that fills the vasculature. To ensure accuracy of the CBV measurements, several innovative refinements were made to standard micro-CT specimen preparation and analysis procedures. Key features of the described method are vascular perfusion under controlled pressure, registration of the micro-CT images to an MRI anatomical brain atlas and re-scaling of micro-CT intensities to CBV units with selectable exclusion of major vessels. Histological validation of the vascular perfusion showed that the average percentage of vessels filled was 93±3%. Comparison of thirteen brain regions in nine mice revealed significant differences in CBV between regions (p<0.0001) while cortical maps showed that primary visual and auditory areas have higher CBV than primary somatosensory areas.
Year
DOI
Venue
2009
10.1016/j.neuroimage.2009.03.083
NeuroImage
Keywords
Field
DocType
Cerebral blood volume,Mice,micro-CT,Microvasculature
Cerebral blood volume,Nuclear medicine,Brain atlas,Psychology,Tomography,Computed tomography,Somatosensory system,Sensory system,Cerebral circulation,Perfusion
Journal
Volume
Issue
ISSN
47
4
1053-8119
Citations 
PageRank 
References 
12
1.12
8
Authors
7
Name
Order
Citations
PageRank
Brige P. Chugh1121.12
Jason P Lerch238831.42
Lisa X. Yu3121.12
Martin Pienkowski4222.43
Robert V. Harrison5121.12
R. Mark Henkelman625124.84
John G. Sled7688191.06