Title
Three-dimensional myocardial strain reconstruction from tagged MRI using a cylindrical B-spline model.
Abstract
In this paper, we present a new method for reconstructing three-dimensional (3-D) left ventricular myocardial strain from tagged magnetic resonance (MR) image data with a 3-D B-spline deformation model. The B-spline model is based on a cylindrical coordinate system that more closely fits the morphology of the myocardium than previously proposed Cartesian B-spline models and does not require explicit regularization. Our reconstruction method first fits a spatial coordinate B-spline displacement field to the tag line data. This displacement field maps each tag line point in the deformed myocardium back to its reference position (end-diastole). The spatial coordinate displacement field is then converted to material coordinates with another B-spline fit. Finally, strain is computed by analytically differentiating the material coordinate B-spline displacement field with respect to space. We tested our method with strains reconstructed from an analytically defined mathematical left ventricular deformation model and ten human imaging studies. Our results demonstrate that a quadratic cylindrical B-spline with a fixed number of control points can accurately fit a physiologically realistic range of deformations. The average 3-D reconstruction computation time is 20 seconds per time frame on a 450 MHz Sun Ultra80 workstation.
Year
DOI
Venue
2004
10.1109/TMI.2004.827961
IEEE Trans. Med. Imaging
Keywords
Field
DocType
biomechanics,cardiology,tagged mri,three-dimensional myocardial strain reconstruction,end-diastole,450 mhz,physiological models,image reconstruction,biomedical mri,magnetic resonance imaging,spatial coordinate b-spline displacement field,3-d b-spline deformation model,quadratic cylindrical b-spline model,deformation,sun ultra workstation,20 s,left ventricle,splines (mathematics),medical image processing,magnetic resonance,algorithms,indexing terms,morphology,spline,capacitive sensors,three dimensional,coordinate system
Iterative reconstruction,B-spline,Displacement field,Computer vision,Cylindrical coordinate system,Cylinder,Artificial intelligence,Deformation (mechanics),Geometry,Mathematics,Computation,Cartesian coordinate system
Journal
Volume
Issue
ISSN
23
7
0278-0062
Citations 
PageRank 
References 
18
1.10
5
Authors
2
Name
Order
Citations
PageRank
Xiang Deng1181.10
Thomas S. Denney Jr.2379.17