Title
Efficient SAT solving: beyond supercubes
Abstract
SAT (Boolean satisfiability) has become the primary Boolean reasoning engine for many EDA applications, so the efficiency of SAT solving is of great practical importance. Recently, Goldberg et al introduced supercubing, a different approach to search-space pruning, based on a theory that unifies many existing methods. Their implementation reduced the number of decisions, but no speedup was obtained. In this paper, we generalize beyond supercubes, creating a theory we call B-cubing, and show how to implement Bcubing in a practical solver. On extensive benchmark runs, using both real problems and synthetic benchmarks, the new technique is competitive on average with the newest version of ZChaff, is much faster in some cases, and is more robust.
Year
DOI
Venue
2005
10.1145/1065579.1065774
DAC
Keywords
Field
DocType
learning artificial intelligence,robustness,search space,sat,design automation,boolean satisfiability,application software,computer science,artificial intelligence,formal verification,boolean functions,engines
Boolean function,Permission,#SAT,Computer science,Boolean satisfiability problem,Electronic engineering,Theoretical computer science,Robustness (computer science),Solver,Formal verification,Speedup
Conference
ISSN
ISBN
Citations 
0738-100X
1-59593-058-2
3
PageRank 
References 
Authors
0.43
18
3
Name
Order
Citations
PageRank
Domagoj Babić11457.11
Jesse D. Bingham2101.22
Alan J. Hu31427148.29