Title
The Complexity of Learning Halfspaces using Generalized Linear Methods.
Abstract
Many popular learning algorithms (E.g. Regression, Fourier-Transform based algorithms, Kernel SVM and Kernel ridge regression) operate by reducing the problem to a convex optimization problem over a vector space of functions. These methods offer the currently best approach to several central problems such as learning half spaces and learning DNF's. In addition they are widely used in numerous application domains. Despite their importance, there are still very few proof techniques to show limits on the power of these algorithms. We study the performance of this approach in the problem of (agnostically and improperly) learning halfspaces with margin $\gamma$. Let $\mathcal{D}$ be a distribution over labeled examples. The $\gamma$-margin error of a hyperplane $h$ is the probability of an example to fall on the wrong side of $h$ or at a distance $\le\gamma$ from it. The $\gamma$-margin error of the best $h$ is denoted $\mathrm{Err}_\gamma(\mathcal{D})$. An $\alpha(\gamma)$-approximation algorithm receives $\gamma,\epsilon$ as input and, using i.i.d. samples of $\mathcal{D}$, outputs a classifier with error rate $\le \alpha(\gamma)\mathrm{Err}_\gamma(\mathcal{D}) + \epsilon$. Such an algorithm is efficient if it uses $\mathrm{poly}(\frac{1}{\gamma},\frac{1}{\epsilon})$ samples and runs in time polynomial in the sample size. The best approximation ratio achievable by an efficient algorithm is $O\left(\frac{1/\gamma}{\sqrt{\log(1/\gamma)}}\right)$ and is achieved using an algorithm from the above class. Our main result shows that the approximation ratio of every efficient algorithm from this family must be $\ge \Omega\left(\frac{1/\gamma}{\mathrm{poly}\left(\log\left(1/\gamma\right)\right)}\right)$, essentially matching the best known upper bound.
Year
Venue
Field
2014
COLT
Linear methods,Polynomial,Upper and lower bounds,Kernel ridge regression,Omega,Artificial intelligence,Hyperplane,Discrete mathematics,Vector space,Mathematical optimization,Combinatorics,Convex optimization,Mathematics,Machine learning
DocType
Citations 
PageRank 
Conference
3
0.39
References 
Authors
10
3
Name
Order
Citations
PageRank
Amit Daniely121620.92
Nati Linial23872602.77
Shai Shalev-Shwartz33681276.32