Title
Inferring phylogeny from whole genomes.
Abstract
Inferring species phylogenies with a history of gene losses and duplications is a challenging and an important task in computational biology. This problem can be solved by duplication-loss models in which the primary step is to reconcile a rooted gene tree with a rooted species tree. Most modern methods of phylogenetic reconstruction (from sequences) produce unrooted gene trees. This limitation leads to the problem of transforming unrooted gene tree into a rooted tree, and then reconciling rooted trees. The main questions are 'What about biological interpretation of choosing rooting?', 'Can we find efficiently the optimal rootings?', 'Is the optimal rooting unique?'.In this paper we present a model of reconciling unrooted gene tree with a rooted species tree, which is based on a concept of choosing rooting which has minimal reconciliation cost. Our analysis leads to the surprising property that all the minimal rootings have identical distributions of gene duplications and gene losses in the species tree. It implies, in our opinion, that the concept of an optimal rooting is very robust, and thus biologically meaningful. Also, it has nice computational properties. We present a linear time and space algorithm for computing optimal rooting(s). This algorithm was used in two different ways to reconstruct the optimal species phylogeny of five known yeast genomes from approximately 4700 gene trees. Moreover, we determined locations (history) of all gene duplications and gene losses in the final species tree. It is interesting to notice that the top five species trees are the same for both methods.Software and documentation are freely available from http://bioputer.mimuw.edu.pl/~gorecki/urec
Year
DOI
Venue
2007
10.1093/bioinformatics/btl296
Bioinformatics
Keywords
Field
DocType
whole genomes,gene loss,rooted tree,gene duplication,rooted species tree,unrooted gene tree,species tree,inferring phylogeny,final species tree,rooted gene tree,inferring species phylogeny,gene tree,linear time
Genome,Phylogenetic tree,Tree rearrangement,Computer science,Phylogenetic reconstruction,Bioinformatics,Time complexity,Phylogenetics
Journal
Volume
Issue
ISSN
23
2
1367-4811
Citations 
PageRank 
References 
17
1.02
8
Authors
2
Name
Order
Citations
PageRank
Paweł Górecki11105.71
Jerzy Tiuryn21210126.00