Title
Curvature Vector Flow to Assure Convergent Deformable Models for Shape Modelling
Abstract
Poor convergence to concave shapes is a main limitation of snakes as a standard segmentation and shape modelling technique. The gradient of the external energy of the snake represents a force that pushes the snake into concave regions, as its internal energy increases when new inflexion points are created. In spite of the improvement of the external energy by the gradient vector flow technique, highly non convex shapes can not be obtained, yet. In the present paper, we develop a new external energy based on the geometry of the curve to be modelled. By tracking back the deformation of a curve that evolves by minimum curvature flow, we construct a distance map that encapsulates the natural way of adapting to non convex shapes. The gradient of this map, which we call curvature vector flow (CVF), is capable of attracting a snake towards any contour, whatever its geometry. Our experiments show that, any initial snake condition converges to the curve to be modelled in optimal time.
Year
DOI
Venue
2003
10.1007/978-3-540-45063-4_23
LECTURE NOTES IN COMPUTER SCIENCE
Keywords
Field
DocType
conditional convergence
Active contour model,Convergence (routing),Mathematical optimization,Saddle point,Curvature,Regular polygon,Distance transform,Vector flow,Initial value problem,Geometry,Mathematics
Conference
Volume
ISSN
Citations 
2683
0302-9743
15
PageRank 
References 
Authors
0.86
16
2
Name
Order
Citations
PageRank
Debora Gil1457.46
Petia Radeva21684153.53