Title
Expanding the landscape of biological computation with synthetic multicellular consortia
Abstract
Computation is an intrinsic attribute of biological entities. All of them gather and process information and respond in predictable ways to an uncertain external environment. Are these computations similar to those performed by artificial systems? Can a living computer be constructed following standard engineering practices? Despite the similarities between molecular networks associated to information processing and the wiring diagrams used to represent electronic circuits, major differences arise. Such differences are specially relevant while engineering molecular circuits in order to build novel functionalities. Among others, wiring molecular components within a cell becomes a great challenge as soon as the complexity of the circuit becomes larger than simple gates. An alternative approach has been recently introduced based on a non-standard approach to cellular computation. By breaking some standard assumptions of engineering design, it allows the synthesis of multicellular engineered circuits able to perform complex functions and open a novel form of computation. Here we review previous studies dealing with both natural and synthetic forms of computation. We compare different systems spanning many spatial and temporal scales and outline a possible "space" of biological forms of computation. We suggest that a novel approach to build synthetic devices using multicellular consortia allows expanding this space in new directions.
Year
DOI
Venue
2013
10.1007/s11047-013-9380-y
Natural Computing
Keywords
Field
DocType
Synthetic biology,Cell computing,Circuit design,Evolution,Robustness
Information processing,Computer science,Biological computation,Circuit design,Cell Computing,Robustness (computer science),Theoretical computer science,Artificial intelligence,Engineering design process,Machine learning,Synthetic biology,Computation
Journal
Volume
Issue
ISSN
12
4
1567-7818
Citations 
PageRank 
References 
2
0.41
10
Authors
2
Name
Order
Citations
PageRank
Ricard V. Solé137747.63
Javier Macía2173.25