Title
Amortized Communication Complexity of Distributions
Abstract
Consider the following general communication problem: Alice and Bob have to simulate a probabilistic function p, that with every (x,y) Î</font > X×Y(x,y)\in{\mathcal{X}}\times {\mathcal{Y}} associates a probability distribution on A ×B{\mathcal{A}} \times {\mathcal{B}}. The two parties, upon receiving inputs x and y, need to output a Î</font > Aa\in{\mathcal{A}}, b Î</font > Bb\in{\mathcal{B}} in such a manner that the (a,b) pair is distributed according to p(x,y). They share randomness, and have access to a channel that allows two-way communication. Our main focus is an instance of the above problem coming from the well known EPR experiment in quantum physics. In this paper, we are concerned with the amount of communication required to simulate the EPR experiment when it is repeated in parallel a large number of times, giving rise to a notion of amortized communication complexity. In the 3-dimensional case, Toner and Bacon showed that this problem could be solved using on average 0.85 bits of communication per repetition [1]. We show that their approach cannot go below 0.414 bits, and we give a fundamentally different technique, relying on the reverse Shannon theorem, which allows us to reduce the amortized communication to 0.28 bits for dimension 3, and 0.410 bits for arbitrary dimension. We also give a lower bound of 0.13 bits for this problem (valid for one-way protocols), and conjecture that this could be improved to match the upper bounds. In our investigation we find interesting connections to a number of different problems in communication complexity, in particular to [2]. The results contained herein are entirely classical and no knowledge of the quantum phenomenon is assumed.
Year
DOI
Venue
2009
10.1007/978-3-642-02927-1_61
International Congress of Mathematicans
Keywords
Field
DocType
different technique,amortized communication complexity,following general communication problem,large number,two-way communication,amortized communication,different problem,communication complexity,arbitrary dimension,epr experiment,quantum physics,probability distribution,upper bound,lower bound,3 dimensional
Discrete mathematics,Combinatorics,Upper and lower bounds,Shannon–Hartley theorem,Communication complexity,Probability distribution,Bell's theorem,Conjecture,EPR paradox,Mathematics,Randomness
Conference
Volume
ISSN
Citations 
5555
0302-9743
2
PageRank 
References 
Authors
0.39
9
2
Name
Order
Citations
PageRank
Jérémie Roland111913.63
Mario Szegedy23358325.80