Title
A Stochastic Collocation Algorithm with Multifidelity Models.
Abstract
We present a numerical method for utilizing stochastic models with differing fidelities to approximate parameterized functions. A representative case is where a high-fidelity and a low-fidelity model are available. The low-fidelity model represents a coarse and rather crude approximation to the underlying physical system. However, it is easy to compute and consumes little simulation time. On the other hand, the high-fidelity model is a much more accurate representation of the physics but can be highly time consuming to simulate. Our approach is nonintrusive and is therefore applicable to stochastic collocation settings where the parameters are random variables. We provide sufficient conditions for convergence of the method, and present several examples that are of practical interest, including multifidelity approximations and dimensionality reduction.
Year
DOI
Venue
2014
10.1137/130929461
SIAM JOURNAL ON SCIENTIFIC COMPUTING
Keywords
Field
DocType
nonintrusive stochastic collocation,model-order reduction,multifidelity models
Convergence (routing),Random variable,Mathematical optimization,Parameterized complexity,Dimensionality reduction,Model order reduction,Physical system,Stochastic modelling,Mathematics,Collocation
Journal
Volume
Issue
ISSN
36
2
1064-8275
Citations 
PageRank 
References 
10
0.63
6
Authors
3
Name
Order
Citations
PageRank
Akil Narayan17712.59
Claude Jeffrey Gittelson2243.58
Dongbin Xiu31068115.57