Title
Bursting Oscillations Induced by Small Noise
Abstract
We consider a model of a square-wave bursting neuron residing in the regime of tonic spiking. Upon introduction of small stochastic forcing, the model generates irregular bursting. The statistical properties of the emergent bursting patterns are studied in the present work. In particular, we identify two principal statistical regimes associated with the noise-induced bursting. In the first case, type I, bursting oscillations are created mainly due to the fluctuations in the fast subsystem. In the alternative scenario, type II bursting, the random perturbations in the slow dynamics play a dominant role. We propose two classes of randomly perturbed slow-fast systems that realize type I and type II scenarios. For these models, we derive the Poincare maps. The analysis of the linearized Poincare maps of the randomly perturbed systems explains the distributions of the number of spikes within one burst and reveals their dependence on the small and control parameters present in the models. The mathematical analysis of the model problems is complemented by the numerical experiments with a generic Hodgkin-Huxley-type model of a bursting neuron.
Year
DOI
Venue
2009
10.1137/070711803
SIAM JOURNAL ON APPLIED MATHEMATICS
Keywords
Field
DocType
neuronal dynamics,bursting,Hodgkin-Huxley model,slow-fast system,noise,Poincare map
Statistical physics,Bursting,Oscillation,Poincaré map,Mathematical analysis,Theta model,Perturbation (astronomy),Mathematics,Hodgkin–Huxley model
Journal
Volume
Issue
ISSN
69
5
0036-1399
Citations 
PageRank 
References 
11
2.47
6
Authors
2
Name
Order
Citations
PageRank
Pawel Hitczenko15215.48
Georgi S. Medvedev29014.52