Title
Quantitative fMRI and oxidative neuroenergetics.
Abstract
The discovery of functional magnetic resonance imaging (fMRI) has greatly impacted neuroscience. The blood oxygenation level-dependent (BOLD) signal, using deoxyhemoglobin as an endogenous paramagnetic contrast agent, exposes regions of interest in task-based and resting-state paradigms. However the BOLD contrast is at best a partial measure of neuronal activity, because the functional maps obtained by differencing or correlations ignore the total neuronal activity in the baseline state. Here we describe how studies of brain energy metabolism at Yale, especially with 13C magnetic resonance spectroscopy and related techniques, contributed to development of quantitative functional brain imaging with fMRI by providing a reliable measurement of baseline energy. This narrative takes us on a journey, from molecules to mind, with illuminating insights about neuronal–glial activities in relation to energy demand of synaptic activity. These results, along with key contributions from laboratories worldwide, comprise the energetic basis for quantitative interpretation of fMRI data.
Year
DOI
Venue
2012
10.1016/j.neuroimage.2012.04.027
NeuroImage
Keywords
Field
DocType
Calibrated fMRI,GABA,Glutamate,Glutamine,Field potentials,Multi-unit activity,Neuroimaging
Brain mapping,Developmental psychology,Energy metabolism,Neuroscience,Premovement neuronal activity,Functional magnetic resonance imaging,Resting state fMRI,Psychology,Energy demand,Neuroimaging,Magnetic resonance imaging
Journal
Volume
Issue
ISSN
62
2
1053-8119
Citations 
PageRank 
References 
6
0.59
17
Authors
2
Name
Order
Citations
PageRank
Fahmeed Hyder1429.53
Douglas L. Rothman2293.97