Title
Statistical Information Based Single Neuron Adaptive Control for Non-Gaussian Stochastic Systems.
Abstract
Based on information theory, the single neuron adaptive control problem for stochastic systems with non-Gaussian noises is investigated in this paper. Here, the statistic information of the output within a receding window rather than the output value is used for the tracking problem. Firstly, the single neuron controller structure, which has the ability of self-learning and self-adaptation, is established. Then, an improved performance criterion is given to train the weights of the single neuron. Furthermore, the mean-square convergent condition of the proposed control algorithm is formulated. Finally, comparative simulation results are presented to show that the proposed algorithm is superior to the PID controller. The contributions of this work are twofold: (1) the optimal control algorithm is formulated in the data-driven framework, which needn't the precise system model that is usually difficult to obtain; (2) the control problem of non-Gaussian systems can be effectively dealt with by the simple single neuron controller under improved minimum entropy criterion.
Year
DOI
Venue
2012
10.3390/e14071154
ENTROPY
Keywords
Field
DocType
statistic information,single neuron adaptive control,non-Gaussian,minimum entropy
Information theory,Mathematical optimization,Control theory,Optimal control,Statistic,PID controller,Control theory,Gaussian,Adaptive control,System model,Mathematics
Journal
Volume
Issue
Citations 
14
7
3
PageRank 
References 
Authors
0.39
10
5
Name
Order
Citations
PageRank
Mifeng Ren1167.85
Jianhua Zhang27114.22
Man Jiang330.73
Ye Tian430.39
Guolian Hou5157.31