Title
Influence of Conformational Entropy on the Protein Folding Rate
Abstract
One of the most important questions in molecular biology is what determines folding pathways: native structure or protein sequence. There are many proteins that have similar structures but very different sequences, and a relevant question is whether such proteins have similar or different folding mechanisms. To explain the differences in folding rates of various proteins, the search for the factors affecting the protein folding process goes on. Here, based on known experimental data, and using theoretical modeling of protein folding based on a capillarity model, we demonstrate that the relation between the average conformational entropy and the average energy of contacts per residue, that is the entropy capacity, will determine the possibility of the given chain to fold to a particular topology. The difference in the folding rate for proteins sharing more ball-like and less ball-like folds is the result of differences in the conformational entropy due to a larger surface of the boundary between folded and unfolded phases in the transition state for proteins with a more ball-like fold. The result is in agreement with the experimental folding rates for 67 proteins. Proteins with high or low side chain entropy would have extended unfolded regions and would require some additional agents for complete folding. Such proteins are common in nature, and their structural properties are of biological importance.
Year
DOI
Venue
2010
10.3390/e12040961
ENTROPY
Keywords
Field
DocType
native topology,conformational entropy,protein stability,folding rate,energy of residue-residue contacts
Mathematical optimization,Protein folding,Conformational entropy,Biophysics,Phi value analysis,Lattice protein,Downhill folding,Folding funnel,Contact order,Bioinformatics,Mathematics,Side chain
Journal
Volume
Issue
Citations 
12
4
0
PageRank 
References 
Authors
0.34
4
1
Name
Order
Citations
PageRank
Oxana V. Galzitskaya112520.15