Title
Optimal synthesis of complex distillation columns using rigorous models
Abstract
The synthesis of complex distillation columns has remained a major challenge since the pioneering work by [Sargent, R.W.H., & Gaminibandara, K. (1976). Optimal design of plate distillation columns. In L.C.W. Dixon (Ed.), Optimization in action. New York: Academic Press]. In this paper, we first provide a review of recent work for the optimal design of distillation of individual columns using tray-by-tray models. We examine the impact of different representations and models, NLP, mixed-integer nonlinear programming (MINLP) and generalized disjunctive programming (GDP), as well as the importance of appropriate initialization schemes. We next provide a review of the synthesis of complex column configurations for zeotropic mixtures and discuss different superstructure representations as well as decomposition schemes for tackling these problems. Finally, we briefly discuss extensions for handling azeotropic mixtures. Numerical examples are presented to demonstrate that effective computational strategies are emerging that are based on disjunctive programming models that are coupled with thermodynamic initialization models and integrated through hierarchical decomposition techniques.
Year
DOI
Venue
2005
10.1016/j.compchemeng.2005.02.030
Computers & Chemical Engineering
Keywords
Field
DocType
Disjunctive programming,Complex distillation columns,Initialization
Mathematical optimization,Disjunctive programming,Computer science,Work in process,Optimal design,Distillation,Initialization,Reactive distillation,Azeotrope,Zeotropic mixture
Journal
Volume
Issue
ISSN
29
6
0098-1354
Citations 
PageRank 
References 
11
1.68
8
Authors
3
Name
Order
Citations
PageRank
Ignacio E. Grossmann12891263.13
Pı́o A Aguirre28010.13
Mariana Barttfeld3285.54