Title
Analysis of the Bluetooth device discovery protocol
Abstract
Device discovery and connection establishment are fundamental to communication between two Bluetooth (BT) devices. In this paper, we give an analytical model of the time it takes for the master in a piconet to discover one slave. We show that, even in the absence of packet interference, the discovery time can be long in some instances. We have simulated the discovery protocol by actually implementing it to validate the analytical model. By means of simulations, we show how discovery time is affected by (i) the presence of multiple potential slaves, and (ii) changes in the maximum backoff limit. Using simulation studies we observed the effectiveness of two proposed improvements to device discovery, namely, (i) avoiding repetitions of the A and B trains before a train switch, and (ii) eliminating the idea of random backoff, or reducing the backoff limit. We show that discovery time can be reduced by avoiding repetitions of the A and B trains before a train switch. However, complete elimination of the random backoff is not a good idea, as discovery time will be too long when the number of BT devices is large. Instead, choosing a small backoff limit of 250---300 slots is highly effective in reducing discovery time even in the presence of a large number (say, 50) of potential slaves.
Year
DOI
Venue
2010
10.1007/s11276-008-0142-1
Wireless Networks
Keywords
Field
DocType
Bluetooth,Device discovery,Inquiry,Inquiry scan
Computer science,Computer network,Bluetooth
Journal
Volume
Issue
ISSN
16
2
1022-0038
Citations 
PageRank 
References 
10
0.93
6
Authors
5
Name
Order
Citations
PageRank
Goutam Chakraborty136356.31
Kshirasagar Naik284673.83
Debasish Chakraborty37711.66
Norio Shiratori4818137.59
David S. L. Wei542251.53