Title
Dynamic bandwidth allocation algorithms for high-speed data wireless networks
Abstract
Next-generation wireless networks are expected to support a wide range of high-speed data services, with Web browsing as one of the major applications. Although high data rates have been shown feasible in a single-user setting, the resource allocation issues that arise in a multiple-user context remain extremely challenging. Compared with voice, data traffic is typically more bursty, while the users are less sensitive to delay. These characteristics require resource allocation strategies to operate in a fundamentally different manner if the spectrum is to be used efficiently. In this paper we propose several algorithms for scheduling the efficient transmission of data to multiple users. As a new feature, the various schemes exploit knowledge of the buffer contents to achieve high throughput, while maintaining fairness by providing quality of service (QoS) to individual users. The proposed algorithms are backward compatible with existing cellular and personal communications services (PCS) standards such as IS-136. They provide a powerful approach to improving spectrum efficiency in forthcoming high-speed data cellular services. The extensive simulation experiments we present in this paper demonstrate that the algorithms significantly outperform conventional schemes.
Year
DOI
Venue
1998
10.1002/bltj.2114
Bell Labs Technical Journal
Keywords
Field
DocType
web browsing,dynamic bandwidth allocation,resource allocation,wireless network
Wireless network,Computer network,Quality of service,Algorithm,Resource allocation,Spectral efficiency,Dynamic bandwidth allocation,Engineering,Throughput,Time division multiple access,Data as a service
Journal
Volume
Issue
ISSN
3
3
1089-7089
Citations 
PageRank 
References 
10
5.19
4
Authors
7
Name
Order
Citations
PageRank
Matthew Andrews1133794.88
Simon C. Borst2388.86
Dominique, Francis32510.03
Predrag R. Jelenkovic421929.99
Krishnan Kumaran535145.88
K. G. Ramakrishnan658798.53
Philip A. Whiting715129.06