Title
Adaptive highly localized waveform design for multiple target tracking.
Abstract
When tracking multiple targets, radar measurements from weak targets are often masked by the ambiguity function (AF) sidelobes of the measurements from stronger targets. This results in deteriorated tracking performance and lost tracks. In this study, we consider the design of configurable waveforms whose AF sidelobes can be positioned to unmask weak targets. Specifically, we construct multicarrier phase-coded (MCPC) waveforms based on Björck constant amplitude zero-autocorrelation (CAZAC) sequences. The MCPC CAZAC waveforms exhibit wide regions in their AF surface without sidelobes and allow for selective positioning of sidelobes. We apply these waveforms in the context of a target tracker by selecting waveform parameters that minimize the expected tracking error. We show that this is accomplished by selecting the position of AF sidelobes to unmask weak targets. The target tracker is based on an independent partitions likelihood particle filter that is capable of processing the high-resolution measurements resulting from the Björck CAZAC sequences and tracks a fixed and known number of targets. Using simulations, we demonstrate the improvement in tracking performance when we adaptively select the MCPC CAZAC waveforms over tracking using non-adaptive waveform configurations or single-carrier phase-coded CAZAC waveforms.
Year
DOI
Venue
2012
10.1186/1687-6180-2012-180
EURASIP J. Adv. Sig. Proc.
Keywords
Field
DocType
Matched Filter, Ambiguity Function, Waveform Parameter, Transmitted Waveform, Weak Target
Radar,Ambiguity function,Computer vision,Computer science,Particle filter,Waveform,Artificial intelligence,Matched filter,Amplitude,Tracking error
Journal
Volume
Issue
ISSN
2012
1
1687-6180
Citations 
PageRank 
References 
6
0.38
9
Authors
3
Name
Order
Citations
PageRank
Ioannis Kyriakides1233.85
Darryl Morrell215917.45
Antonia Papandreou-Suppappola323429.88