Title
Kernel Methods for Melanoma Recognition.
Abstract
Skin cancer is a spreading disease in the western world. Early detection and treatment are crucial for improving the patient survival rate. In this paper we present two algorithms for computer assisted diagnosis of melanomas. The first is the support vector machines algorithm, a state-of-the-art large margin classifier, which has shown remarkable performances on object recognition and categorization problems. The second method, spin glass-Markov random fields, combines results of statistical physics of spin glasses with Markov random fields. We compared the two approaches using color histograms as features. We benchmarked our methods with another algorithm presented in the literature, which uses a sophisticated segmentation technique and a set of features especially designed for melanoma recognition. To our knowledge, this algorithm represents the state of the art on skin lesions classification. We show with extensive experiments that the support vector machines approach outperforms the existing method and, on two classes out of three, it achieves performances comparable to those obtained by expert clinicians.
Year
DOI
Venue
2006
10.3233/978-1-58603-647-8-983
Studies in Health Technology and Informatics
Keywords
Field
DocType
Melanoma Recognition,Computer Assisted Diagnosis,Support Vector Machines,Kernel Methods
Histogram,Data mining,Computer science,Artificial intelligence,Random field,Pattern recognition,Segmentation,Support vector machine,Markov chain,Kernel method,Margin classifier,Machine learning,Cognitive neuroscience of visual object recognition
Conference
Volume
ISSN
Citations 
124
0926-9630
1
PageRank 
References 
Authors
0.36
2
4
Name
Order
Citations
PageRank
Elisabetta La Torre1121.44
Tatiana Tommasi250229.31
Barbara Caputo33298201.26
Giovanni E. Gigante431.47