Title
Probabilistic Joint Image Segmentation and Labeling by Figure-Ground Composition
Abstract
We propose a layered statistical model for image segmentation and labeling obtained by combining independently extracted, possibly overlapping sets of figure-ground (FG) segmentations. The process of constructing consistent image segmentations, called tilings, is cast as optimization over sets of maximal cliques sampled from a graph connecting all non-overlapping figure-ground segment hypotheses. Potential functions over cliques combine unary, Gestalt-based figure qualities, and pairwise compatibilities among spatially neighboring segments, constrained by T-junctions and the boundary interface statistics of real scenes. Building on the segmentation layer, we further derive a joint image segmentation and labeling model (JSL) which, given a bag of FGs, constructs a joint probability distribution over both the compatible image interpretations (tilings) composed from those segments, and over their labeling into categories. The process of drawing samples from the joint distribution can be interpreted as first sampling tilings, followed by sampling labelings conditioned on the choice of a particular tiling. We learn the segmentation and labeling parameters jointly, based on maximum likelihood with a novel estimation procedure we refer to as incremental saddle-point approximation. The partition function over tilings and labelings is increasingly more accurately approximated by including incorrect configurations that are rated as probable by candidate models during learning. State of the art results are reported on the Berkeley, Stanford and Pascal VOC datasets, where an improvement of 28 % was achieved for the segmentation task only (tiling), and an accuracy of 47.8 % was obtained on the test set of VOC12 for semantic labeling (JSL).
Year
DOI
Venue
2014
10.1007/s11263-013-0663-7
International Journal of Computer Vision
Keywords
Field
DocType
Image segmentation,Image labeling,Semantic segmentation,Statistical models,Learning and categorization
Scale-space segmentation,Computer science,Segmentation-based object categorization,Image segmentation,Artificial intelligence,Computer vision,Joint probability distribution,Pattern recognition,Segmentation,Statistical model,Connected-component labeling,Machine learning,Test set
Journal
Volume
Issue
ISSN
107
1
0920-5691
Citations 
PageRank 
References 
8
0.42
49
Authors
3
Name
Order
Citations
PageRank
Adrian Ion122221.11
João Carreira21680108.75
Cristian Sminchisescu33700244.41