Title
On Multicopy Opportunistic Forwarding Protocols in Nondeterministic Delay Tolerant Networks
Abstract
Delay Tolerant Networks (DTNs) are characterized by nondeterministic mobility and connectivity. Message routing in DTNs usually employs a multicopy forwarding scheme. To avoid the cost associated with flooding, much effort has been focused on opportunistic forwarding, which aims to reduce the cost of forwarding while retaining high routing performance by forwarding messages only to nodes that have high delivery probabilities. This paper presents two multicopy forwarding protocols, called optimal opportunistic forwarding (OOF) and OOF-, which maximize the expected delivery rate and minimize the expected delay, respectively, while requiring that the number of forwardings per message does not exceed a certain threshold. Our contributions in this paper are summarized as follows: We apply the optimal stopping rule in the multicopy opportunistic forwarding protocol. Specifically, we propose two optimal opportunistic forwarding metrics to maximize delivery probability and minimize delay, respectively, with a fixed number of copies and within a given time-to-live. We implement and evaluate OOF and OOF- as well as several other representative forwarding protocols, i.e., Epidemic, Spray-and-wait, {\rm MaxProp}^\ast, and Delegation. We perform trace-driven simulations using both real and synthetic traces. Simulation results show that, in the traces where nodes have regular intermeeting times, the delivery rates of OOF and OOF- can be 30 percent greater than the compared routing protocols.
Year
DOI
Venue
2012
10.1109/TPDS.2011.280
IEEE Trans. Parallel Distrib. Syst.
Keywords
Field
DocType
delivery probability,nondeterministic delay tolerant networks,multicopy forwarding scheme,representative forwarding protocol,optimal opportunistic forwarding,multicopy opportunistic forwarding protocols,opportunistic forwarding,multicopy forwarding protocol,delivery rate,multicopy opportunistic forwarding protocol,forwarding message,optimal opportunistic forwarding metrics,routing protocols,optimal stopping,probability,time to live,routing protocol,simulation,routing,protocols,delay tolerant network
Message routing,Nondeterministic algorithm,Computer science,Computer network,Real-time computing,Delegation,Optimal stopping rule,Virtual routing and forwarding,Distributed computing,Routing protocol
Journal
Volume
Issue
ISSN
23
6
1045-9219
Citations 
PageRank 
References 
28
0.83
16
Authors
2
Name
Order
Citations
PageRank
Cong Liu158630.47
Jie Wu28307592.07