Title
Emergent Criticality Through Adaptive Information Processing In Boolean Networks
Abstract
We study information processing in populations of Boolean networks with evolving connectivity and systematically explore the interplay between the learning capability, robustness, the network topology, and the task complexity. We solve a long-standing open question and find computationally that, for large system sizes N, adaptive information processing drives the networks to a critical connectivity K-c = 2. For finite size networks, the connectivity approaches the critical value with a power law of the system size N. We show that network learning and generalization are optimized near criticality, given that the task complexity and the amount of information provided surpass threshold values. Both random and evolved networks exhibit maximal topological diversity near K-c. We hypothesize that this diversity supports efficient exploration and robustness of solutions. Also reflected in our observation is that the variance of the fitness values is maximal in critical network populations. Finally, we discuss implications of our results for determining the optimal topology of adaptive dynamical networks that solve computational tasks.
Year
DOI
Venue
2011
10.1103/PhysRevLett.108.128702
PHYSICAL REVIEW LETTERS
Keywords
DocType
Volume
evolutionary computing,network topology,neural network,boolean network,power law,critical value,information processing,adaptive control systems
Journal
108
Issue
ISSN
Citations 
12
0031-9007
12
PageRank 
References 
Authors
0.83
0
4
Name
Order
Citations
PageRank
Alireza Goudarzi1557.88
Christof Teuscher225937.31
Natali Gulbahce3354.79
Thimo Rohlf4212.89