Title
Non-identical smoothing operators for estimating time-frequency interdependence in electrophysiological recordings.
Abstract
Synchronization of neural activity from distant parts of the brain is crucial for the coordination of cognitive activities. Because neural synchronization varies both in time and frequency, time–frequency (T-F) coherence is commonly employed to assess interdependences in electrophysiological recordings. T-F coherence entails smoothing the cross and power spectra to ensure statistical consistency of the estimate, which reduces its T-F resolution. This trade-off has been described in detail when the cross and power spectra are smoothed using identical smoothing operators, which may yield spurious coherent frequencies. In this article, we examine the use of non-identical smoothing operators for the estimation of T-F interdependence, i.e., phase synchronization is characterized by phase locking between signals captured by the cross spectrum and we may hence improve the trade-off by selectively smoothing the auto spectra. We first show that the frequency marginal density of the present estimate is bound within [0,1] when using non-identical smoothing operators. An analytic calculation of the bias and variance of present estimators is performed and compared with the bias and variance of standard T-F coherence using Monte Carlo simulations. We then test the use of non-identical smoothing operators on simulated data, whose T-F properties are known through construction. Finally, we analyze empirical data from eyes-closed surface electroencephalography recorded in human subjects to investigate alpha-band synchronization. These analyses show that selectively smoothing the auto spectra reduces the bias of the estimator and may improve the detection of T-F interdependence in electrophysiological data at high temporal resolution.
Year
DOI
Venue
2013
10.1186/1687-6180-2013-73
EURASIP J. Adv. Sig. Proc.
Keywords
Field
DocType
Coherence, Time–frequency analysis, Electroencephalography, Functional connectivity, Neural synchronization
Synchronization,Computer science,Cross-spectrum,Phase synchronization,Coherence (physics),Smoothing,Time–frequency analysis,Artificial intelligence,Spurious relationship,Machine learning,Estimator
Journal
Volume
Issue
ISSN
2013
1
1687-6180
Citations 
PageRank 
References 
3
0.44
16
Authors
6