Title
Locality Constrained Dictionary Learning for Nonlinear Dimensionality Reduction
Abstract
Current nonlinear dimensionality reduction (NLDR) algorithms have quadratic or cubic complexity in the number of data, which limits their ability to process real-world large-scale datasets. Learning over a small set of landmark points can potentially allow much more effective NLDR and make such algorithms scalable to large dataset problems. In this paper, we show that the approximation to an unobservable intrinsic manifold by a few latent points residing on the manifold can be cast in a novel dictionary learning problem over the observation space. This leads to the presented locality constrained dictionary learning (LCDL) algorithm, which effectively learns a compact set of atoms consisting of locality-preserving landmark points on a nonlinear manifold. Experiments comparing state-of-the-art DL algorithms, including K-SVD, LCC and LLC, show that LCDL improves the embedding quality and greatly reduces the complexity of NLDR algorithms.
Year
DOI
Venue
2013
10.1109/LSP.2013.2246513
IEEE Signal Process. Lett.
Keywords
Field
DocType
lcc,locality-preserving landmark point,nldr algorithm,llc,k-svd,lcdl,face recognition,nonlinear dimensionality reduction,quadratic complexity,dimensionality reduction,locality constrained dictionary learning,lcdl algorithm,state-of-the-art dl algorithm,dictionary learning,real-world large-scale dataset processing,cubic complexity,computer vision,nonlinear manifold,manifold learning,approximation algorithms,geometry,k svd,dictionaries,manifolds,image reconstruction
Facial recognition system,Locality,Embedding,Pattern recognition,Theoretical computer science,Artificial intelligence,Nonlinear dimensionality reduction,Small set,Unobservable,Manifold,Mathematics,Scalability
Journal
Volume
Issue
ISSN
20
4
1070-9908
Citations 
PageRank 
References 
22
0.73
7
Authors
2
Name
Order
Citations
PageRank
Yin Zhou112210.27
Kenneth E. Barner281270.19