Title
Algorithmic and architectural design for real-time and power-efficient Retinex image/video processing
Abstract
This paper presents novel algorithmic and architectural solutions for real-time and power-efficient enhancement of images and video sequences. A programmable class of Retinex-like filters, based on the separation of the illumination and reflectance components, is proposed. The dynamic range of the input image is controlled by applying a suitable non-linear function to the illumination, while the details are enhanced by processing the reflectance. An innovative spatially recursive rational filter is used to estimate the illumination. Moreover, to improve the visual quality results of two-branch Retinex operators when applied to videos, a novel three-branch technique is proposed which exploits both spatial and temporal filtering. Real-time implementation is obtained by designing an Application Specific Instruction-set Processor (ASIP). Optimizations are addressed at algorithmic and architectural levels. The former involves arithmetic accuracy definition and linearization of non-linear operators; the latter includes customized instruction set, dedicated memory structure, adapted pipeline, bypasses, custom address generator, and special looping structures. The ASIP is synthesized in standard-cells CMOS technology and its performances are compared to known Digital signal processor (DSP) implementations of real-time Retinex filters. As a result of the comparison, the proposed algorithmic/architectural design outperforms state-of-art Retinex-like operators achieving the best trade-off between power consumption, flexibility, and visual quality.
Year
DOI
Venue
2007
10.1007/s11554-007-0027-z
J. Real-Time Image Processing
Keywords
Field
DocType
application specific instruction-set processors asip � digital signal processor dsp � retinex � image enhancementreal-time image and video filters,power efficiency,linear operator,application specific instruction set processor,real time,digital signal processor,dynamic range,video processing
Computer vision,Color constancy,Video processing,Digital signal processing,Computer science,Instruction set,Digital signal processor,Filter (signal processing),Real-time computing,Artificial intelligence,Linearization,Recursion
Journal
Volume
Issue
ISSN
1
4
1861-8219
Citations 
PageRank 
References 
28
1.17
18
Authors
4
Name
Order
Citations
PageRank
Sergio Saponara139258.59
Luca Fanucci253282.83
Stefano Marsi315216.78
Giovanni Ramponi438151.84