Title
Computational Study of Rhythm Propagation Induced by TMS Stimuli in Different Brain Regions
Abstract
Recent data [1] suggest that different regions in the brain may exhibit distinct rhythms when perturbed by Transcranial Magnetic Stimulation (TMS). Knowledge of these rhythms may be of value to understand how the brain realizes its functions and to assess brain connectivity. In this work we implemented a neural mass model [2] of three interconnected cortical regions (Brodmann Area (BA) 19 (occipital lobe), BA 7 (parietal lobe) and BA 6 (frontal lobe)) to fit the impulse responses in three ROIs during an experiment of TMS stimulation on a single subject. First, the natural rhythm of each region was mimicked acting on the local parameters, which reproduce the number of synaptic contacts among neural populations. Then, rhythm propagation from one region to another was simulated (at three different intensities of TMS stimulation) acting on infra-region connectivity parameters. Results show that the model can reproduce the natural rhythms of the three regions, and most rhythm changes induced by stimulation of another region, by using quite a simple connectivity pattern. This pattern is scarcely affected by the stimulus intensity.
Year
DOI
Venue
2010
10.1007/978-3-642-27534-0_26
Studies in Computational Intelligence
Keywords
Field
DocType
Transcranial magnetic stimulation,Neural mass models,Cortical rhythms
Brodmann area,Neuroscience,Transcranial magnetic stimulation,Stimulus (physiology),Occipital lobe,Frontal lobe,Rhythm,Stimulation,Parietal lobe,Physics
Conference
Volume
ISSN
Citations 
399
1860-949X
0
PageRank 
References 
Authors
0.34
5
5
Name
Order
Citations
PageRank
Filippo Cona1585.89
Melissa Zavaglia2796.83
Marcello Massimini36014.56
Mario Rosanova4465.10
Mauro Ursino57411.00